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Abstract. Virtual Reality (VR) systems (the CAVETM1) generate images in real-
time on the basis of the viewer’s view in the virtual world, so that the viewer
percepts a real-life, three-dimensional view of a given scene. The concurrency
and real-time features in virtual environments systems make them  difficult to
design, implement and test. Collaborative Virtual Environment   (CVEs) makes
it more complicated by adding network consideration into VRs. CVEs demand
high Quality-of-Service (QoS) requirements on the network to maintain natural
and real-time interactions among users. By using formal methods to model
CVEs and analyze their real-time behavior, we can evaluate the network effects
on CVEs and the performance of CVEs. To model temporal uncertainties in
CVEs, we propose an extension of Fuzzy-Timing Petri Nets (EFTN) in this
paper. We give our EFTN models for the CAVE and the NICE (Narrative
Immersive Constructionist/Collaborative Environments) and we analyze the
network effects on the NICE and the dynamic performance of the NICE.

1  Introduction

Virtual Reality (VR) can be defined as interactive computer graphics that provide
viewer-centered perspective, large field of view and stereo. The CAVETM1 (Cave
Automatic Virtual Environment) ([2], [3], [4]) is a virtual reality environment
designed and implemented at the Electronic Visualization Laboratory at the
University of Illinois at Chicago. The CAVE, as shown in Fig. 1, is a surround screen,
surround sound, projection based virtual reality environment system. The actual
environment is a 10x10x10 foot cube, where images are rear-projected in stereo on 3
walls (front wall, left wall, and right wall), and down-projected onto the floor. (The
floor can be called as floor wall. So there are totally 4 walls.) The 4 walls display
computer generated images in real-time on the basis of the viewer’s view in the
virtual world, so that the viewer percepts a real-life, three-dimensional view of a
given scene.  The viewer wears head tracker and holds a wand (the CAVE input
device). So the viewer’s head and hand position can be detected and the viewer can
grab objects with the wand. The three-dimensional view is generated in real-time to
match the viewer’s perspective in the virtual world.
                                                       
1 CAVETM is a registered trademark of the Regents of the University of Illinois.



Fig. 1. The CAVE

Because of the concurrency and real-time features in virtual environments systems,
it is difficult to design, implement and test VRs. Collaborative Virtual Environment
(CVE) makes it more complicated by adding network consideration into VRs. It
allows people in remote virtual environments to learn from each other, work together
on designing systems, or perform a complex group task together over networks.

Narrative Immersive Constructionist/Collaborative Environments (NICEs) ([2],
[3]), developed by Electronic Visualization Laboratory at the University of Illinois at
Chicago, are collaborative learning environments where children can do gardening
and learning cooperatively. In the NICE, children located in distributed virtual
environments (e.g., CAVEs), can take care of a virtual garden together in the center of
a virtual island. The children, represented by avatars, collaboratively plant, grow, and
pick vegetables and flowers. They make sure that the plants have sufficient water,
sunlight, and space to grow, and they keep hungry animals away from sneaking in the
garden and eat the plants. Collaboration in NICE refers to communication and shared
experience between children who are in distributed locations and tending the same
virtual garden.

Fig. 2. (a) Jim (the avatar) is handing a flower to Eddie (the other avatar); (b) A child is
interacting with an avatar in the CAVE.

The NICE uses a central server to simulate the garden and maintain consistency
across all the participating virtual environments. Each virtual environment (VE)
transmits the local entity information (the position and action of the child in current
VE) through the network to remote sites. Meanwhile, the central server sends the
world information (the information about the garden) to each site so that all sites can



share the same information.  It is very important to draw remote entities in real-time
in each VE so that the user will not notice any difference between the local and
remote entities in the environment.

CVEs demand high Quality-of-Service (QoS) requirements on the network to
maintain natural and real-time interactions among users. QoS refers to the
requirements on network latency and jitter (the variability in network latency.)  By
using formal methods to model CVEs and analyze their real-time behavior, we can
evaluate the network effects on CVEs and the performance of CVEs. Petri Nets have
rigorous analysis capability and have been shown useful for assuring the reliability
and correctness of concurrent systems. In order to model and analyze real-time
systems, various timed extensions of Petri Nets have been proposed. However, many
real-time systems have temporal uncertainty. For example, the time duration of
rendering an image for a wall in CAVE varies on the complexity of the geometric
objects in the image, and the network delays in CVEs vary in a large range. To deal
with temporal uncertainties in real-time systems, Murata [7] proposed Fuzzy-Timing
High-Level Petri Nets (FTHNs) to model time explicitly in terms of fuzzy set theory.
FTHNs model temporal uncertainties in real-time systems, and provides possibility
distributions of events. So FTHNs can capture all temporal uncertainties in CVEs and
they would be suitable models for CVEs.

This paper is organized as follows: Section 2 reviews Fuzzy-Timing Petri Nets and
proposes an extension of Fuzzy-Timing Petri Nets (EFTN); Section 3 gives our EFTN
models for the CAVE; Section 4 analyzes the dynamic behavior of our EFTN model
of the CAVE; Section 5 discusses our EFTN models for the NICE; And section 6
concludes the paper and gives our future research plan.

2 Fuzzy-Timing Petri Nets and Extended Fuzzy-Timing Petri Nets

The main features of Fuzzy-Timing High-Level Petri Nets (FTHNs) are the following
four fuzzy set theoretic functions of time called fuzzy timestamp, fuzzy enabling time,
fuzzy occurrence time and fuzzy delay. A fuzzy timestamp π(τ) is associated with
each token and each place, and π(τ) is a fuzzy time function or possibility distribution
giving the numerical estimate of the possibility that a particular token arrives at time τ
in a particular place. In FTHNs, arcs (t, p) from transitions t to places p are associated
with fuzzy delays dtp(τ). For simplicity, trapezoidal possibility distributions specified

by the 4-tuple (π1, π2, π3, π4), are used to represent fuzzy time functions.
The formal definition of FTHNs and the method to compute and update fuzzy

enabling time and fuzzy occurrence time when a transition firing occurs, are given in
[7]. FTHNs provide additional information on partial ordered events in terms of their
degrees of possibilities, instead of transforming them into a total ordering. The
computations involved in FTHNs are basically repeated additions and comparisons of
real numbers and are necessary only for certain finite firing sequences, and need not
generate the entire state space. Thus these computations can be done very fast and
thus FTHNs are suited for estimating the performance of time-critical systems.

A Fuzzy-timing Petri Net (FTN) [11] model is an unfolded version of the fuzzy-
timing high-level Petri Net (FTHN).

We extend FTN by integrating FTN with Merlin’s Time Petri Net [5]. We define
an Extended Fuzzy-Timing Petri Net (EFTN) model as a 6-tuple (P, T, A, D, FT, CT),



where:  (P, T, A, D, FT) is a Fuzzy Timing Petri Net, with the default value of dtp(τ)

being (0,0,0,0); CT: T → Q+ ×  (Q+ ∪  ∞) is a mapping from the transition set T to
firing intervals: i.e., each transition is associated with a firing interval [α, β], where
the default interval is [0, 0] (a transition fires as soon as it is enabled). If a transition t
is enabled at time instant τ, t may not fire before time instant τ+α, and t must fire
before or at time instant τ+β. A transition firing itself is an atomic event and takes
zero time. (CT is taken from Merlin’s Time Petri Net [5].)

Now, in EFTN, the fuzzy enabling time et(τ) of transition t is still computed  by
et(τ) = latest{πi(τ), i = 1, 2, ..., n}. When there are m transitions enabled with their
fuzzy enabling times, ei(τ),  i = 1, 2, ..., t, ..., m, and  CT(ti) = pi[αi, βi], we compute the
fuzzy occurrence time ot(τ) of transition t whose fuzzy enabling time et(τ),  as follows:
ot(τ) = min{et(τ) ⊕  pt(αt, αt, βt, βt), earliest{ei(τ) ⊕  pi (αi, αi, βi, βi), i = 1, 2, ..., t, ...,
m}}. We can see that, ot1(τ) < ot2(τ), when et1(τ) = et2(τ) but [α1, β1] < [α2, β2]. (⊕  is the
extended addition  defined as πtp(τ) = ot(τ) ⊕ dtp(τ) = h1(o1,o2,o3,o4) ⊕ h2 (d1,d2,d3,d4)

= min (h1, h2 ) (o1 + d1, o2 + d2, o3 + d3, o4 + d4)) The main utility of the above firing
intervals of transitions is to give a firing possibility and priority among transitions in
conflict. This is very useful for modeling real-time systems.

3 EFTN models for the CAVE

The CAVE has three main subsystems: (Fig. 4 gives an EFTN model for the CAVE.)
•  Tracker subsystem: which obtains data about the position of the viewer’s head and

hand. Since the viewer wears a head tracker and holds a wand where sensors are
located, his position is detected by the tracker operating at 96 HZ sampling
frequency. The tracking sample is obtained every 10.4 ms when the monitor signal
arises [6].

•  Main subsystem: which creates images to be displayed on the walls of the CAVE.
There are four graphic pipelines working concurrently. Each of them is used to
render the image on one wall. The CAVE implementation uses double buffering
between the main subsystem and the display subsystem. While the main subsystem
is writing into one buffer, the display subsystem reads from the other buffer. The
buffer swapping is synchronized by a monitor signal at 46 HZ frequency. Once
images for all 4 walls have been rendered, buffer swapping takes place at the next
leading edge of the monitor signal if the display subsystem is also ready to swap
buffer.

•  Image display subsystem: which draws the images on the four walls. When the
drawings of 4 images are all finished, the display subsystem is ready to swap
buffer.

4 The Analysis of EFTN models for the CAVE

− Reduction Rules for EFTN



In order to analyze EFTN models, we introduce two reduction rules [1] for EFTNs in
this section. Our reduction rules can reduce the size of EFTN models and preserve
safeness, deadlock and timing properties of EFTN. We only illustrate the two rules
applied to our EFTN models for the CAVE in Fig. 5. We plan to give all of our
reduction rules and the formal proofs in our future paper.
− Behavior of EFTN models for the CAVE: After we apply our reduction rules to the

EFTN model, the reduced EFTN model is shown as Fig. 6.
Transition Swap_and_draw and Swap_Signal_passed are in conflict. The

possibility of Swap_and_draw fires instead of Swap_Signal_passed is
possibility(πComplete_render_4walls(τ) < eSwap_Signal_passed(τ) ⊕ (ε 4, ε4, ε4, ε4))
= possibility((5,10,18,28) < (21,21,21,21))
= shaded_area/area_trapizoidal(5,10,18,28) = 0.842.

0

1

         5         10            18  20.8 21        28
τ

Fig. 3. Possibility of Swap_and_draw fires instead of Swap_Signal_passed

If Swap_Signal_passed fires, the display subsystem won’t begin to draw any image
until the next monitor signal comes. This Possibility decides that the delay that the
user’s movement being reflected on the walls is around 84 ms or 104 ms.
possibility(delay ≈ 84ms) = 0.842.

We use Design/CPN [14] to simulate our EFTN model for the CAVE. By
recording the timestamp that a token i generated by firing Hand_Wand_Input and the
timestamp that the wall drawing is completed by using data represented by token i, we
can get the delay. In our simulation, the delay is around 84 ms for 5739 times in a
total of 6843 delay times we recorded. The simulation result is consistent with our
possibility analysis.

5  EFTN models for the NICE

The main distributed components of the NICE consist of the garden simulation server,
the WWW servers from which models are downloaded, and the NICE clients [2]. The
NICE used an unreliable protocol (either multicasting or UDP) to share avatar
information from magnetic trackers in remote locations, a reliable socket connection
(TCP protocol) to share world (garden) state information and a reliable connection
dynamically download models from WWW servers using the HTTP 1.0 protocol. The
NICE server supports both the garden’s simulation and broadcasting avatar
information.
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Fig. 4. An EFTN model for the CAVE, where the timestamps of tokens arriving in Head,
Wand, Button_Input, TrackerMonitor and SwapMonitor at initial state are πHead(τ) = πWand(τ) =
πButton_Input(τ) = (0,0,0,0), πTrackerMonitor(τ) = (10.4,10.4,10.4,10.4),  and πSwapMonitor(τ) =
(20.7,20.8,20.8,20.8). The delay for Head and Wand data arriving at the Tracker is
Dheadwand_to_tracker(τ) =  (50,50,50,50)ms. ε3 = 0.2 ms. Dconvert(τ) =(10,10,10,10)ms. Drender_front(τ),
Drender_left(τ), Drender_right(τ), and Drender_floor(τ) are the fuzzy delays of rendering images for front wall,
left wall, right wall, and the floor. Assume Drender_front(τ) = (5,10,18,28)ms, and Drender_left(τ) =
Drender_right(τ) = Drender_floor(τ) = (4,6,8,10)ms, since the image on the front wall is usually more
complicated than the ones on other walls. The delay for converting and transferring tracker data
to the computer is Dconvert(τ) = (10,12,18,20)ms, the delay for drawing images on each wall is
Ddraw_front(τ) = Ddraw_left(τ) =  Ddraw_right(τ) = Ddraw_floor(τ) = (2,2,2,2)ms, and ε4 = 0.2 ms (a short time
period that the monitor signal lasts).



The Information Request Broker (IRB) is the core of all client and server
applications in the NICE. An IRB is an autonomous repository of persistent data that
is accessible by a variety of networking interfaces. A key is a handle to a storage
location in an IRB's database. Keys are uniquely identified across all IRBs. A local
key can initiate and accept multiple linkages to and from other remote IRBs. Any
modifications that are made to one key will automatically be propagated to all the
other linked keys.

The garden server is an IRB with two main keys: an incoming message key and an
outgoing message key. Each client has a key on the server to hold its avatar-state
information. Any changes to client1 (avatar1) will be sent by the client1 to the
avatar1-state key on the sever. Another client (e.g. avatar2) will get the state of client1
by subscribing to the avatar1-state key on the server. If the local avatar has any action
changing the garden (e.g., plant a tree), the local VE will send a message from the
local OUT Key to the server’s IN key. Then the garden server updates the world state
and sends the new world state information to each clients via the server’s OUT keys.
The garden world evolves itself as the plant grows, the weather changes, and animals
appear. So the server sends each client the new world state information once it
updates. Here we give the EFTN model for 2 existing NICE clients communicating
with each other and with the server as shown in Fig. 7.

Fig. 7 shows the communication interfaces of the NICE clients and server. In the
NICE, a local VE (e.g., CAVE) will need local avatar state information, remote
avatars state information, and world state information to render images. The EFTN
model for a CAVE in the NICE as a distributed component is shown in Fig. 8. After
we put the communication interface and internal structure of distributed CAVEs
together, we may analyze the network effects on the NICE and the dynamic
performance of the NICE.
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Fig. 5.  (a) Post-fusion (post-fuse transition ta with tbs); (b) Parallel fusion of places.

Unreliable protocols (e.g. UDP) are used for the transmission of avatar/state
information (remote tracker data). That is because: 1. The loss of one tracker data is
usually followed shortly afterwards by newer ones, and 2. Unreliable protocols have a
lower latency and utilize lower bandwidth than reliable protocols. However, UDP
protocol is unordered. Using unordered remote tracker data will make the remote
avatar jump back and forth on the local screen. Fig. 9 shows the time of avatar2’s
original movement and the time that movement is displayed on NICE client1’s screen.



We can see that the remote avatar’s display jumps back and forth. To avoid the
jumping back behavior, the NICE currently uses a filter to accept remote avatar data
in increasing order. In Fig. 8, the transition Got_new_avatar2_data works as a filter.
Fig. 10 shows the display behavior using the filter. Now the jumping back
phenomenon is eliminated. However, one early arriving remote avatar tracker data
will make the filter discard all remote tracker data that are sent before, but received
later than that early arriving data. From Fig. 10, we can see that the display of remote
avatar is not very smooth.  To display the remote avatar’s movement more smoothly,
we can use a buffer to store the incoming remote avatar state information sent after
the last one used for local display. And we use the remote avatar’s state information
in smooth gap. The EFTN model and the simulation result of using this new strategy
are to be included in [13].

Part of simulation results of our EFTN models for the NICE are shown in Figs. 11,
and 12. Fig. 11 shows the distribution of the delay that remote tracker information
being displayed on local screens. And Fig. 12 shows the distribution of the time that
remote tracker data lags behind the local data. CVEs demand high requirement on
network delay and jitter so that remotely distributed users’ collaboration won’t be
disturbed. By using reduction, simulation, or occurrence graph on our EFTN model,
the network effects on CVEs can be easily evaluated. More timing analysis
(simulation and occurrence graph analysis), and our EFTN model for the TCP
protocol and effects of using TCP in CVEs will be included in [13].
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Fig. 6. The reduced EFTN model, where latest(Drender_front(τ),Drender_left(τ) , Drender_right(τ), Drender_floor(τ))
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Ddraw_left(τ), Ddraw_right(τ), Ddraw_floor(τ)) = (2,2,2,2)ms, and Dconvert(τ) =(10,10,10,10)ms.



6 Conclusion and Future Work

Our EFTN models for the CAVE and NICE and the analysis of our EFTN models for
the CAVE, indicate that EFTNs are powerful to specify and verify VRs. EFTNs can
capture the temporal uncertainties in CVEs. By simulating our EFTN models, we can
analyze the network effects on CVEs and the dynamic performance of CVEs.

In section 4, we show a simple example of possibility analysis of our EFTN model
for the CAVE. EFTN models can give information on partial ordered events in terms
of their degrees of possibilities. The possibility analysis is based on model checking
on transition firing sequences [11] or occurrence graphs. The possibility analysis of
our EFTN model for the NICE (and other CVEs) is to be included in our future paper.

Experiment results in [9] indicate that TCP’s reliable and ordered behavior greatly
increases the average network latency and jitter. Designing new transport layer
protocol suitable for transmitting world state information (minimize the jitter) will be
desirable. We plan to propose new protocols, model and analyze theirs performance
and effects on CVEs in our future paper.
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Fig. 7. An EFTN model for 2 existing NICE clients communicating with each other and with
the server, where the delay of UDP channel is DUDP(τ)  = (50,100,150,200)ms, the world
evolves in the interval DEV(τ)  = (10,60,180,300)s, and each TCP transition is an abstract of  the
subnet for TCP protocol ( TCP is a reliable and ordered protocol. One Protocol Data Unit
(PDU)’s loss will delay all subsequent PDUs. No subsequent PDU can be delivered to the
application layer until that PDU is successfully received. The subnet model for TCP protocol is
to be included in the full paper [13].)
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Fig. 8. The EFTN model for a CAVE in the NICE as a distributed component
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Fig. 9.  The display behavior of remote avatar on the local screen without using the filter



300

400

500

600

700

800

900

1000

1100

1200

1300

1400

1500

50 150 250 350 450 550 650 750 850 950 1050 1150 1250

Time of avatar2's original movement

T
im

e 
o

f 
av

at
ar

2'
s 

m
o

ve
m

en
t 

d
is

p
la

ye
d

 o
n

 N
IC

E
 

cl
ie

n
t1

's
 s

cr
ee

n

Fig. 10. The display behavior of remote avatar on the local screen with using the filter
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