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SUMMARY Despite their attractive properties, networked 
virtual environments (net-VEs) are notoriously difficult to design, 
implement and test due to the concurrency, real-time and 
networking features in these systems.  The current practice for net-
VE design is basically trial and error, empirical, and totally lacks 
formal methods.  This paper proposes to apply a Petri net formal 
modeling technique to a net-VE - NICE (Narrative Immersive 
Constructionist / Collaborative Environment), predict the net-VE 
performance based on simulation, and improve the net-VE 
performance. The NICE is essentially a network of collaborative 
virtual reality systems called the CAVE - (Cave Automatic Virtual 
Environment).  First, we present extended fuzzy-timing Petri net 
models of both CAVE and NICE. Then, by using these models and  
Design/CPN as the simulation tool, we have conducted various 
simulations to study real-time behavior, network effects and 
performance (latencies and jitters) of NICE.  Our simulation results 
are consistent with experimental data.  
Key words: Petri nets, networked-virtual environments, fuzzy 
timing, formal modeling 

1. Introduction 
A networked virtual environment (net-VE) is a network of 
collaborative virtual reality systems which provides 
multiple users with the ability to interact with each other in 
real time, share information, and manipulate objects in the 
shared environment through immersive computer graphics 
[1].  The first modern networked game / virtual 
environments can be dated as early as to Amaze [2] in 1984, 
and experimental net-VE systems have been around for 
decades [1].  Due to the recent rapid development of 
computing and networking techniques, there are diverse 
applications and increasing use of net-VEs, such as 
battlefield simulation [3], education [4], entertainment 
(Doom, Atari, Nintendo) [1], virtual conference [5], 
collaborative design [6], etc. 
 Accompanying the fast-growing net-VEs are many 
challenging research problems including those associated 
with multimedia synchronization, keeping fairness to every 
user while providing heterogeneous access ports, 
bandwidth allocation with the limited network capacity, 
keeping consistent real-time view to all users despite 
network latency, user authentication, failure management, 
scalability, etc. [1]. Most of these problems also exist in 
other kinds of distributed real-time systems such as 
distributed database systems.  But problems in net-VEs are 
much more complex and difficult to solve, because they 
must: 1) Rely on network and contend with all the 
challenges of managing network resources, data loss, 

network failure, and concurrency; 2) Maintain smooth, real-
time display; and 3) Process real-time data input from users. 
Users may be distributed at multiple remote hosts. Yet, 
users should see the virtual environments as if they existed 
locally. Natural and real-time interaction among users 
should be maintained. 
 Despite their attractive properties, networked 
virtual environments (net-VEs) are notoriously difficult to 
design, implement and test due to the concurrency, real-
time and networking features in these systems, as mentioned 
in the above.  The current practice for net-VE design is 
basically trial and error, empirical, and totally lacks formal 
methods. There are several low-level simulation 
programming packages and libraries have been developed 
([7], [8]). However, they aim to help programming, instead 
of modeling and performance analysis. Although many 
techniques are developed for concurrent real-time systems, 
few approaches have been applied to the field of virtual 
environments. ASADAL / PROTO [9] is a tool using Visual 
Object Specification (VOS), Data Flow Diagrams and 
Statecharts, to support the development of virtual 
environments. However, it focuses on the modeling visual 
objects and interaction between visual objects. Network 
issues and network effects on CVEs are not the subjects 
there. A timed Petri net model for a stand-alone virtual 
environment is presented in [18]. However, no network 
issue exists for the stand-alone VE and the work only shows 
simple simulation results.  
  This paper proposes to apply a Petri net formal 
modeling technique to a net-VE - NICE (Narrative 
Immersive Constructionist / Collaborative Environment) 
([13], [14]). NICE is essentially a network of collaborative 
virtual reality systems called CAVETM1  - (CAVE 
Automatic Virtual Environment) ([10], [11], [12]). 
Applying formal modeling techniques such as the Petri net, 
we hope to open an avenue to give clear semantics to the 
configurations of net-VEs, and to apply formal validation 
and verification techniques.  In this paper, we first present 
fuzzy-timing Petri net models ([15], [16]) of both CAVE 
and NICE. Then, using these models and Design/CPN as 
the simulation tool [21], we have conducted various 
simulations to study real-time behavior, network effects and 
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performance (latencies and jitters) of NICE. Our simulation 
results are consistent with experimental data [22], and 
shows that a formal method can provide great insight into 
net-VEs design and dynamic behavior, estimate system 
performance, evaluate network effects on net-VEs, and thus 
help to improve design of net-VEs. 
 This paper is organized as follows: Section 2 
presents an introduction of CAVE and NICE.  Section 3 
reviews briefly fuzzy-timing Petri nets and proposes an 
extension of fuzzy-timing Petri nets (EFTN). EFTN models 
of CAVE and NICE are given in Sections 4 and 5.  Section 
6 discusses simulation results of EFTN models for TCP 
(Transmission Control Protocol) and NICE. Our conclusion 
and future research plan are given in Section 7. 

2. About CAVE & NICE 

The CAVE (CAVE Automatic Virtual Environment) ([10], 
[11], [12]) is a virtual reality environment designed and 
implemented at the Electronic Visualization Laboratory 
(EVL) at the University of Illinois at Chicago (UIC). The 
CAVE is a surround-screen, projection-based virtual reality 
system. The actual environment is a 10x10x10 foot cube, 
where images are rear-projected in stereo on 3 walls (front 
wall, left wall, and right wall), and down-projected onto the 
floor. (The floor can be considered as floor wall. So there 
are 4 walls total.) The 4 walls each display computer 
generated stereo images of the virtual world in real-time 
based on the position and orientation of the user’s head and 
hand in the CAVE. The viewer wears LCD shutter glasses 
to separate the stereo images.  The viewer’s head and hand 
position and orientation are tracked through sensors on the 
shutter glasses and on the ‘wand’ (the CAVE input device). 
The viewer can grab and move objects in the virtual world 
with the wand.  
 The Narrative Immersive Constructionist / 
Collaborative Environments (NICE) project at EVL of UIC 
is a collaborative learning environment: a virtual garden, 
where children can do gardening and learn cooperatively. In 
NICE, children located in distributed virtual environments 
(e.g., CAVEs), can take care of a virtual garden together in 
the center of a virtual island. The children, represented by 
avatars, collaboratively plant, grow, and pick vegetables 
and flowers. They make sure that the plants have sufficient 
water, sunlight, and space to grow, and they keep hungry 
animals away from sneaking into the garden and eating the 
plants.  
 We will give a more detailed description of the 
configurations of the CAVE and NICE in Sections 4 and 5. 

3. Fuzzy-Timing Petri Nets and Extended 
Fuzzy-Timing Petri Nets 
To deal with temporal uncertainties in real-time systems, 
Murata [15] has proposed Fuzzy-Timing High-Level Petri 
Nets (FTHNs), which employ fuzzy set theory to express 
uncertain or subjective timing information. The main 
features of the FTHN are the following four fuzzy set 

theoretic functions of time: fuzzy timestamp, fuzzy enabling 
time, fuzzy occurrence time and fuzzy delay. A fuzzy 
timestamp π(τ) is a fuzzy time function or possibility 
distribution giving the numerical estimate of the possibility 
that a particular token arrives at time τ in a particular place. 
In a FTHN, each arc (t, p) from transition t to place p is 
associated with fuzzy delay dtp(τ). For simplicity, 
trapezoidal or triangular possibility distributions specified 
by the 4-tuple (π1, π2, π3, π4) as shown in Fig. 1, are used to 
represent fuzzy time functions. The formal definition of 
FTHNs and the method to compute and update fuzzy 
enabling time and fuzzy occurrence time when a transition 
firing occurs, are given in [15]. FTHNs provide additional 
information on partial ordered events in terms of their 
degrees of possibilities, instead of transforming them into a 
total ordering. The computations involved in FTHNs are 
basically repeated additions and comparisons of real 
numbers and are necessary only for certain finite firing 
sequences, and need not generate the entire state space. 
Thus these computations can be done very fast and thus 
FTHNs are suited for estimating the performance of time-
critical systems. 

π1
0 τ

π(τ)

1

π2 π3 π4  
Fig. 1   Trapezoidal possibility distribution 

 A Fuzzy-timing Petri Net (FTN) [16] model is an 
unfolded version of the fuzzy-timing high-level Petri net 
(FTHN). We extend FTN by integrating FTN with Merlin’s 
time Petri net [17]. An Extended Fuzzy-Timing Petri Net 
(EFTN) model is a FTN with the default value of dtp(τ) 
being (0,0,0,0), and with an additional function CT: T → Q+ 

×  Q+ ×  (Q+ ∪ ∞) which is a mapping from the transition set 
T to firing intervals with possibility p: i.e., each transition is 
associated with a firing interval p[α, β], where the default 
interval is 1[0, 0] (a transition definitely fires as soon as it is 
enabled) (CT is taken from Merlin’s time Petri net [17]). If 
a transition t is enabled at time instant τ, t may not fire 
before time instant τ + α, and t must fire before or at time 
instant τ + β. Possibility p ∈ [0,1]. p is 1 if transition t is not 
in conflict with any other transition. p can be less than 1 
when we want to assign different chances to transitions in 
structural conflict. For example, if transition t1 and 
transition t2 are in structural conflict, t1 fires with 99% 
chance and t2 fires with 1% chance, we assign p1 = 0.99 and 
p2 = 0.01. A transition firing itself is an atomic event and 
takes zero time. Our purpose of attaching firing intervals 
(with possibilities) to transitions is to give a firing 
possibility and priority among transitions in conflict. This is 
very useful for modeling real-time systems.  
 In EFTN, assume that transition t is enabled by n 
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tokens, the fuzzy enabling time et(τ) of transition t is 
computed by et(τ) = latest{πi(τ), i = 1, 2, ..., n}, where  
latest is the operator that constructs the “latest-
arrival/lowest-possibility distribution” from n distributions 
[15], and πi(τ) is the fuzzy time distribution that the enabling 
token i arrives in the input place Pi of transition t. When 
there are m transitions in conflict enabled with their fuzzy 
enabling times, ei(τ),  i = 1, 2, ..., t, ..., m, and CT(ti) = pi[αi, 
βi], we compute the fuzzy occurrence time ot(τ) of transition 
t whose fuzzy enabling time et(τ),  as follows: ot(τ) = 
min{et(τ) ⊕ pt(αt, αt, βt, βt), earliest{ei(τ) ⊕ pi (αi, αi, βi, βi), 
i = 1, 2, ..., t, ..., m}}, where earliest is the operator that 
constructs the “earliest-arrival/highest-possibility 
distribution” from m distributions, min is the intersection of 
distributions, and ⊕ is the extended addition defined as in 
the computation of the fuzzy time distribution that a token 
arrives at transition t’s output place p: πtp(τ) = ot(τ) 
⊕ dtp(τ) = h1(o1,o2,o3,o4) ⊕ h2 (d1,d2,d3,d4) = min (h1, h2 ) (o1 

+ d1, o2 + d2, o3 + d3, o4 + d4)  ([15]) (dtp(τ) is the fuzzy 
delay associated with the arc (t,p)). 

4. EFTN models for CAVE 
The CAVE has the following three main subsystems [10]:  
• Tracker subsystem: which obtains 6-dimensional data 

about the position of the viewer’s head and hand.  
• Main subsystem: which creates images to be displayed on 

the walls of the CAVE. There are four graphic pipelines 
working concurrently. Each is used to render the image 
on one wall. The CAVE implementation uses double 
buffering between the main subsystem and the display 
subsystem. While the main subsystem is writing into one 
buffer, the display subsystem reads from the other buffer. 
The buffer swapping is synchronized by a monitor signal 
at 46 HZ frequency. Once images for all 4 walls have 
been rendered, a buffer swapping takes place at the 
leading edge of the next coming monitor signal if the 
display subsystem is also ready to swap buffers. 

• Image display subsystem: which draws the images on the 
four walls. When the drawings of 4 images are all 
finished, the display subsystem is ready to swap buffers. 

Fig. 2 shows our EFTN model for the CAVE. In order to 
analyze EFTN models, we illustrate two reduction rules 
([19], [20]) for EFTNs. Our reduction rules can reduce the 
size of EFTN models, while preserving safeness, deadlock 
and timing properties of EFTN models. Applying the two 
reduction rules shown in Fig. 3 to our EFTN model for the 
CAVE in Fig. 2, results in a reduced EFTN model, as is  
shown in Fig. 4. Fuzzy delays in the EFTN models in Figs. 
2 and 4 are specified as follows. In Fig. 2, the delay for Head 
and Wand data arriving at the Tracker, Dheadwand_to_tracker(τ) =  
(50,50,50,50) ms. The delay for converting and transferring tracker 
data to the Unix workstation, Dconvert(τ) = (10,10,10,10) ms. 
Drender_front(τ), Drender_left(τ), Drender_right(τ), and Drender_floor(τ) are the 
fuzzy delays of rendering images for front wall, left wall, right 

wall, and the floor. We assume Drender_front(τ) = 
(25.0,37.4,50.0,62.4) ms, and Drender_left(τ) =  Drender_right(τ) = 
Drender_floor(τ) = (10,20,30,35) ms, since the image on the front wall 
is usually more complicated than the ones on other walls. The 
delay for drawing images on each wall is Ddraw_front(τ) = Ddraw_left(τ) 
=  Ddraw_right(τ) = Ddraw_floor(τ) = (2,2,2,2) ms, and ε3 = ε4 = 0.2 ms 
(a short time period that a monitor signal lasts). In Fig. 4, we have 
latest {Drender_front(τ), Drender_left(τ), Drender_right(τ), Drender_floor(τ)} = 
latest {(25.0,37.4,50.0,62.4), (10,20,30,35), (10,20,30,35), 
(10,20,30,35)} = (25.0,37.4,50.0,62.4) ms, and latest(Ddraw_front(τ), 
Ddraw_left(τ), Ddraw_right(τ), Ddraw_floor(τ)) = (2,2,2,2) ms. 
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Fig. 2 An EFTN model for the CAVE 

5.  EFTN models for NICE 

The main distributed components of NICE consist 
of a garden simulation server, an avatar repeater for avatar 
state information, and NICE clients ([13], [14]).  A NICE 
client uses an unreliable (but faster) protocol UDP (User 
Datagram Protocol) to send avatar information (local 
tracker data) to the avatar repeater and a reliable (but 
slower) socket connection (TCP protocol) to send the local 
avatar’s world-changing messages to the server. The avatar 
repeater broadcasts avatar state information by using 
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UDP. The NICE server supports the garden simulation, 
updates the world (garden) once receiving an avatar’s 
world-changing message, and broadcasts the new world 
state information to all clients by using TCP.  

The Information Request Broker (IRB) is the core 
of all client and server applications in the NICE. An IRB is 
an autonomous repository of persistent data that is 
accessible by a variety of networking interfaces. A key is a 
handle to a storage location in an IRB's database. Keys are 
uniquely identified across all IRBs. A local key can initiate 
and accept multiple linkages to and from other remote 
IRBs. Any modifications that are made to one key will 
automatically be propagated to all the other linked keys 
([13], [14]). 

pa pa

ta
da(τ)

tb1tbn

db1(τ)dbn(τ)

pb1pbn

tfn tf1

pbn pb1

db1(τ) ⊕ da(τ)dbn(τ) ⊕ da(τ)

N NR

t

tb

latest{da1(τ), dan(τ)}

N

da1(τ)dan(τ)
t

NR

tb

(a) Post-fusion (post-fuse transition ta with tb1, …,  tbn)

(b) Parallel fusion of places  
Fig. 3 Illustration of two reduction rules: Post-fusion of transitions, 

and  Parallel fusion of places. 
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 Fig. 4 Reduced EFTN model of the CAVE 

 The garden server is an IRB with two main keys: 
an incoming message key and an outgoing message key. If 
the local avatar has any action changing the garden (e.g., 
“plant a tree”), the local VE will send a message from the 
local OUT Key to the server’s IN key by using TCP. Then 
the garden server updates the world state and sends the new 
world state information to each client’s IN key via the 
server’s OUT keys by using TCP. The garden world 
evolves itself as the plant grows, the weather changes, and 
animals appear. So the server sends each client the new 
world state information by using TCP once it updates.  
 The avatar repeater has a key for each client to 
hold its avatar-state information. When client1 updates the 
local screen (swapping-buffer happens), avatar1’s state 
information will be sent from client1 to the avatar1-state 
key on the repeater by using UDP. Another client (e.g. 
avatar2) will get the state of avatar1 by subscribing to the 
avatar1-state key on the repeater.  
 In Fig. 5, we give the EFTN model for the garden 
server, avatar repeater and communication interface of two 
existing NICE clients communicating with each other, the 
repeater and the garden server. Each client sends local 
avatar’s tracker information to the repeater by using UDP 
and the repeater broadcasts it to all other clients also by 
using UDP. Using UDP, the sender just sends out the 
Protocol Data Unit (PDU) and never retransmits. So we use 
a transition UDP with fuzzy delay DUDP(τ)  = 
(50,100,150,200) ms (which is based on statistics data 
collected from network monitoring [22]) to represent UDP 
channel in Fig. 5, and we assume the data loss rate of UDP 
is 1%.   
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Fig. 5    An EFTN model for 2 existing NICE clients 
communicating with each other, the repeater and the server, where 
the delay of UDP channel is DUDP(τ)  = (50,100,150,200) ms, the 
world evolves in the interval DEV(τ)  = (10,60,180,300) sec. 
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Fig. 6    The EFTN model for a CAVE in  NICE as a distributed component

 Each TCP transition in Fig. 5 is an abstract of a 
subnet for TCP protocol. TCP is a reliable and ordered 
transport layer protocol. One PDU’s loss will delay all 
subsequent PDUs. No subsequent PDU can be delivered to 
the application layer until that PDU is successfully received. 
We have built our EFTN model for TCP and tested the 
behavior of TCP model by simulation. Our simulation 
results are consistent with network monitoring results [22]. 
Because the space is limited, we do not include our EFTN 
model for TCP in this paper. We only show our simulation 
results and discuss the behavior of TCP protocol and its 
effects on NICE in Section 6.2 and 6.3.  

 In NICE, a local VE (e.g., CAVE) will need local 
avatar-state information, remote avatars state information, 
and world-state information to render images. The EFTN 
model for a CAVE in NICE as a distributed component is 
shown in Fig. 6. When an avatar wants to change the world, 
it usually takes about 1 second (possibility distribution 
(800,1000,1200,1500) ms) to complete the action. During 
an avatar’s world-changing action, all of the tracker data 
used for updating the local screen will be sent to the server 
by using TCP. An avatar may change the world 2~3 times 
per minute and the local screen may be updated 16~24 
times per second (16 times/sec if the image rendering delay 
≤ 41.6 ms each time, 24 times/sec if the image 
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rendering delay is in the interval (41.6, 62.4) ms each time). 
So, we assume 0.2% of the tracker data used for updating 
local screen may indicate that local avatar wants to change 
the garden. (In Fig. 6, when the avatar is not already in an 
world-changing action, place ChangeWorldOrNot has two 
output transitions, the possibility of firing transition Change 
is 0.002, and the possibility of firing Not_Change is 0.998.) 
After we put the communication interface and internal 
structure of distributed CAVEs together, we have studied 
the network effects on NICE and the dynamic performance 
of NICE by using a simulation tool within Design/CPN 
[21]. These simulation results are given next in Section 6. 

6 Simulation Results 
We have simulated fuzzy delays of our EFTN models by 
defining a function to generate single values in trapezoidal 
possibility distributions within the Design/CPN tool [21].  
Given a fuzzy delay D(τ) = (a,b,c,d), we define a function 
FUZZY(a,b,c,d) to generate a single delay value in 
trapezoidal possibility distribution (a,b,c,d) as the 
representation of the fuzzy delay, whenever the fuzzy delay 
D(τ) is encountered in simulation. In function 
FUZZY(a,b,c,d),  
1) A random value atime in the interval [a,d] is generated.  
2) If atime is in the interval [b,c], atime will be picked up as the 
delay value since the possibility is 1 in the interval [b,c].    
3) If atime is in the interval [a,b) or (c,d], we generate a random 
value V in (0,1) and compute the possibility D(atime) in the 
trapezoidal distribution (a,b,c,d). atime will be picked up as the 
delay value only if D(atime) ≥ V.  
4) Repeat the above procedure until a delay value can be picked 
up.  
The following are the results of the simulations. Section 6.1 
is about strategies for utilizing remote avatar’s state 
information received from UDP channel and the simulation 
results for remote avatar’s corresponding display behavior 
on local screen. Section 6.2 discusses simulation results of 
our EFTN model for TCP protocol. And Section 6.3 shows 
the TCP protocol’s effects on message response time 
between the NICE garden server and clients. 
6.1   Remote Avatar’s Display Behavior on Local Screen 

Unreliable protocols (e.g. UDPs) are used for the (faster) 
transmission of avatar state information (remote tracker 
data). That is because: 1) The loss of one tracker data is 
usually followed shortly afterwards by newer ones; and 2) 
Unreliable protocols have a lower latency and utilize lower 
bandwidth than reliable protocols. However, UDP protocol 

is unordered. Using unordered remote tracker data will 
make the remote avatar jump back and forth on the local 
screen. Fig. 7 shows the time of avatar2’s original 
movement and the time that movement is displayed on the 
NICE client1’s screen in the original design. We see the 
remote avatar’s display may jump back and forth. To avoid 
the jumping back behavior, the NICE currently uses a filter 
to accept remote avatar data in increasing order. Fig. 8 
shows the display behavior using the filter. Now the 
jumping back phenomenon is eliminated. However, one 
early arriving remote avatar tracker data will make the filter 
discard all remote tracker data that are sent before, but 
received later than that early arriving data. From Fig. 8, we  
see that the display of the remote avatar is not smooth yet.  
 To display the remote avatar’s movement more 
smoothly, we suggest using a buffer to store the incoming 
remote avatar state information sent after the last one used 
for local display, and using the remote avatar’s state 
information in smooth gap. Fig. 9 shows the improved 
strategy using a buffer for remote avatar tracker data. When 
a new remote tracker data comes and its sequence number is 
greater than the last one’s used for rendering images, it is 
inserted into the buffer and the list of sequence numbers of 
the remote tracker data is kept in ascending order in the 
buffer. When it is time to render new images, pick up the 
remote tracker data in the middle of the list from the buffer. 
Fig. 10 shows that the display of the remote avatar is much 
smoother using the improved strategy than using the filter.  
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Fig. 7  The simulated display behavior of a remote avatar on 

the local screen without using the filter 
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Fig. 8 The simulated display behavior of a remote avatar on the 
local screen with using the filter 

Fig. 9 Improved strategy: use a buffer for remote avatar state 
information 
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Fig. 10 The simulated display behavior of a remote avatar on the 

local screen with using buffer 

6.2 Test of TCP protocol 

We tested our model for TCP protocol by giving one data 
unit to TCP sender for transmission every 50 ms and 100 
ms respectively, and recording the delay from the time the 
data unit is passed to the TCP sender to the time the TCP 

receiver delivers it to the application. Our simulation result 
is consistent with the experimental results in [22], which is 
obtained by monitoring the network delay on the Internet.  
♦ Case 1: give the TCP sender a data unit every 50 ms: 
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Fig.11 (a) Delay distribution for data units coming every 50 ms 

0

100

200

300

400

500

600

700

800

900

1000

1 38 75 112 149 186 223 260 297 334 371 408 445 482 519 556 593 630 667 704 741 778

Data unit sequence number

D
el

ay
 ti

m
e 

[m
s]

 
Fig.11(b) History chart for each data unit coming every 50 ms 

 As shown in Fig.11, it is obvious that the TCP has 
a slow start and one data unit’s long delay will delay all 
subsequent data units after it starts. TCP’s reliable and 
ordered behavior greatly increases the average network 
latency and jitter. 

♦ Case 2: give the TCP sender a data unit every 100 ms: 
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Fig.12(a) Delay distribution for data units coming every 100 ms 

 Fig. 12(a) shows that decreasing the traffic to one 
data unit every 100 ms makes the delay distribution very 
similar to UDP’s delay distribution (50,100,150,200) 
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ms. However, Fig. 12(b) shows that one data unit’s long 
delay (because of loss and retransmit), still greatly delays 
the subsequent data units. Also the slow start still exists. 
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 Fig.12(b) History chart for each data unit coming every 100 ms 

6.3  Response Time via TCP channel 

Once an avatar has a world-changing action, a world-
changing message is sent from the NICE client to the 
garden server via TCP channel. Once the garden server 
updates the world state according to the client’s 
world_changing message, the changed world state is sent 
from garden server to all clients via TCP channels. We refer 
the response time as the time duration from the time that a 
world-changing message is sent by a NICE client to the 
time that the updated world state is received by that client. 

Here we show the simulation results of the 
response time via TCP channels for a NICE project with 5 
clients. Fig. 13 shows the history chart recorded at client1’s 
site for the NICE with 5 clients. We can see the effects of 
TCP’s slow start. And it is obvious that the response times 
for all avatars’ world-changing activities have the same 
trend at client1’s site, if it happens that all avatars want to 
change the world at the same moment (e.g., around 78000 
ms in Fig. 13.) The loss of one data on the TCP channel 
from the server’s OUT key to a client’s IN key will not only 
cause a long delay for client1 receiving response for one 
avatar’s world-changing activity, but also postpone client1 
receiving response for all avatar’s world-changing 
activities. The TCP channel from the server’s OUT key to a 
client’s IN key may get congested when the number of 
clients is increased and all avatars happen to try changing 
the world at the same time. This situation becomes a 
bottleneck. 

7. Conclusion and Future Work 
As mentioned in the introduction, networked virtual 
environments (net-VEs) are not novel, but at present, there 
is no formal method available for designing, implementing 
and testing net-VEs. This paper proposes to apply Petri net 
formal modeling and simulation of NICE - a net-VE 
developed at EVL of UIC. We have shown that EFTNs are 
powerful enough to model complex systems such as CAVE 
and NICE, and simulate the uncertain temporal behaviors of 

a net-VE system. Using our EFTN models, we have 
simulated the remote avatar’s display behavior on local 
screen and proposed an improved strategy to make the 
display smoother. The characteristics and bottleneck of the 
response time via the TCP channel was easily captured in 
the simulation results Our simulation shows that the TCP is  
reliable but greatly increases the average network latency 
and jitters. Thus, it is desirable to design a new transport 
layer protocol which can transmit shared state information 
with less latency and jitter than the TCP. We plan to 
propose new protocols, and model, simulate and analyze 
them in our future papers.  
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 Fig. 13 History chart of the response time for the NICE  

 with 5 clients 
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