
 1

Fuzzy-Timing Petri Net Modeling and Simulation
of a Networked Virtual Environment – NICE

Y. Zhou, T. Murata, T. DeFanti, and H. Zhang
Department of Electrical Engineering and Computer Science

University of Illinois at Chicago
Chicago, Illinois 60607-7053 USA

{yzhou1, murata, tom, hzhang1}@eecs.uic.edu

SUMMARY Despite their attractive properties, networked
virtual environments (net-VEs) are notoriously difficult to design,
implement and test due to the concurrency, real-time and
networking features in these systems. The current practice for net-
VE design is basically trial and error, empirical, and totally lacks
formal methods. This paper proposes to apply a Petri net formal
modeling technique to a net-VE - NICE (Narrative Immersive
Constructionist / Collaborative Environment), predict the net-VE
performance based on simulation, and improve the net-VE
performance. The NICE is essentially a network of collaborative
virtual reality systems called the CAVE - (Cave Automatic Virtual
Environment). First, we present extended fuzzy-timing Petri net
models of both CAVE and NICE. Then, by using these models and
Design/CPN as the simulation tool, we have conducted various
simulations to study real-time behavior, network effects and
performance (latencies and jitters) of NICE. Our simulation results
are consistent with experimental data.
Key words: Petri nets, networked-virtual environments, fuzzy
timing, formal modeling

1. Introduction
A networked virtual environment (net-VE) is a network of
collaborative virtual reality systems which provides
multiple users with the ability to interact with each other in
real time, share information, and manipulate objects in the
shared environment through immersive computer graphics
[1]. The first modern networked game / virtual
environments can be dated as early as to Amaze [2] in 1984,
and experimental net-VE systems have been around for
decades [1]. Due to the recent rapid development of
computing and networking techniques, there are diverse
applications and increasing use of net-VEs, such as
battlefield simulation [3], education [4], entertainment
(Doom, Atari, Nintendo) [1], virtual conference [5],
collaborative design [6], etc.
 Accompanying the fast-growing net-VEs are many
challenging research problems including those associated
with multimedia synchronization, keeping fairness to every
user while providing heterogeneous access ports,
bandwidth allocation with the limited network capacity,
keeping consistent real-time view to all users despite
network latency, user authentication, failure management,
scalability, etc. [1]. Most of these problems also exist in
other kinds of distributed real-time systems such as
distributed database systems. But problems in net-VEs are
much more complex and difficult to solve, because they
must: 1) Rely on network and contend with all the
challenges of managing network resources, data loss,

network failure, and concurrency; 2) Maintain smooth, real-
time display; and 3) Process real-time data input from users.
Users may be distributed at multiple remote hosts. Yet,
users should see the virtual environments as if they existed
locally. Natural and real-time interaction among users
should be maintained.
 Despite their attractive properties, networked
virtual environments (net-VEs) are notoriously difficult to
design, implement and test due to the concurrency, real-
time and networking features in these systems, as mentioned
in the above. The current practice for net-VE design is
basically trial and error, empirical, and totally lacks formal
methods. There are several low-level simulation
programming packages and libraries have been developed
([7], [8]). However, they aim to help programming, instead
of modeling and performance analysis. Although many
techniques are developed for concurrent real-time systems,
few approaches have been applied to the field of virtual
environments. ASADAL / PROTO [9] is a tool using Visual
Object Specification (VOS), Data Flow Diagrams and
Statecharts, to support the development of virtual
environments. However, it focuses on the modeling visual
objects and interaction between visual objects. Network
issues and network effects on CVEs are not the subjects
there. A timed Petri net model for a stand-alone virtual
environment is presented in [18]. However, no network
issue exists for the stand-alone VE and the work only shows
simple simulation results.
 This paper proposes to apply a Petri net formal
modeling technique to a net-VE - NICE (Narrative
Immersive Constructionist / Collaborative Environment)
([13], [14]). NICE is essentially a network of collaborative
virtual reality systems called CAVETM1 - (CAVE
Automatic Virtual Environment) ([10], [11], [12]).
Applying formal modeling techniques such as the Petri net,
we hope to open an avenue to give clear semantics to the
configurations of net-VEs, and to apply formal validation
and verification techniques. In this paper, we first present
fuzzy-timing Petri net models ([15], [16]) of both CAVE
and NICE. Then, using these models and Design/CPN as
the simulation tool [21], we have conducted various
simulations to study real-time behavior, network effects and

1 CAVETM is a registered trademark of the Board of Trustees of
the University of Illinois

 2

performance (latencies and jitters) of NICE. Our simulation
results are consistent with experimental data [22], and
shows that a formal method can provide great insight into
net-VEs design and dynamic behavior, estimate system
performance, evaluate network effects on net-VEs, and thus
help to improve design of net-VEs.
 This paper is organized as follows: Section 2
presents an introduction of CAVE and NICE. Section 3
reviews briefly fuzzy-timing Petri nets and proposes an
extension of fuzzy-timing Petri nets (EFTN). EFTN models
of CAVE and NICE are given in Sections 4 and 5. Section
6 discusses simulation results of EFTN models for TCP
(Transmission Control Protocol) and NICE. Our conclusion
and future research plan are given in Section 7.

2. About CAVE & NICE

The CAVE (CAVE Automatic Virtual Environment) ([10],
[11], [12]) is a virtual reality environment designed and
implemented at the Electronic Visualization Laboratory
(EVL) at the University of Illinois at Chicago (UIC). The
CAVE is a surround-screen, projection-based virtual reality
system. The actual environment is a 10x10x10 foot cube,
where images are rear-projected in stereo on 3 walls (front
wall, left wall, and right wall), and down-projected onto the
floor. (The floor can be considered as floor wall. So there
are 4 walls total.) The 4 walls each display computer
generated stereo images of the virtual world in real-time
based on the position and orientation of the user’s head and
hand in the CAVE. The viewer wears LCD shutter glasses
to separate the stereo images. The viewer’s head and hand
position and orientation are tracked through sensors on the
shutter glasses and on the ‘wand’ (the CAVE input device).
The viewer can grab and move objects in the virtual world
with the wand.
 The Narrative Immersive Constructionist /
Collaborative Environments (NICE) project at EVL of UIC
is a collaborative learning environment: a virtual garden,
where children can do gardening and learn cooperatively. In
NICE, children located in distributed virtual environments
(e.g., CAVEs), can take care of a virtual garden together in
the center of a virtual island. The children, represented by
avatars, collaboratively plant, grow, and pick vegetables
and flowers. They make sure that the plants have sufficient
water, sunlight, and space to grow, and they keep hungry
animals away from sneaking into the garden and eating the
plants.
 We will give a more detailed description of the
configurations of the CAVE and NICE in Sections 4 and 5.

3. Fuzzy-Timing Petri Nets and Extended
Fuzzy-Timing Petri Nets
To deal with temporal uncertainties in real-time systems,
Murata [15] has proposed Fuzzy-Timing High-Level Petri
Nets (FTHNs), which employ fuzzy set theory to express
uncertain or subjective timing information. The main
features of the FTHN are the following four fuzzy set

theoretic functions of time: fuzzy timestamp, fuzzy enabling
time, fuzzy occurrence time and fuzzy delay. A fuzzy
timestamp π(τ) is a fuzzy time function or possibility
distribution giving the numerical estimate of the possibility
that a particular token arrives at time τ in a particular place.
In a FTHN, each arc (t, p) from transition t to place p is
associated with fuzzy delay dtp(τ). For simplicity,
trapezoidal or triangular possibility distributions specified
by the 4-tuple (π1, π2, π3, π4) as shown in Fig. 1, are used to
represent fuzzy time functions. The formal definition of
FTHNs and the method to compute and update fuzzy
enabling time and fuzzy occurrence time when a transition
firing occurs, are given in [15]. FTHNs provide additional
information on partial ordered events in terms of their
degrees of possibilities, instead of transforming them into a
total ordering. The computations involved in FTHNs are
basically repeated additions and comparisons of real
numbers and are necessary only for certain finite firing
sequences, and need not generate the entire state space.
Thus these computations can be done very fast and thus
FTHNs are suited for estimating the performance of time-
critical systems.

π1
0 τ

π(τ)

1

π2 π3 π4
Fig. 1 Trapezoidal possibility distribution

 A Fuzzy-timing Petri Net (FTN) [16] model is an
unfolded version of the fuzzy-timing high-level Petri net
(FTHN). We extend FTN by integrating FTN with Merlin’s
time Petri net [17]. An Extended Fuzzy-Timing Petri Net
(EFTN) model is a FTN with the default value of dtp(τ)
being (0,0,0,0), and with an additional function CT: T → Q+

× Q+ × (Q+ ∪ ∞) which is a mapping from the transition set
T to firing intervals with possibility p: i.e., each transition is
associated with a firing interval p[α, β], where the default
interval is 1[0, 0] (a transition definitely fires as soon as it is
enabled) (CT is taken from Merlin’s time Petri net [17]). If
a transition t is enabled at time instant τ, t may not fire
before time instant τ + α, and t must fire before or at time
instant τ + β. Possibility p ∈ [0,1]. p is 1 if transition t is not
in conflict with any other transition. p can be less than 1
when we want to assign different chances to transitions in
structural conflict. For example, if transition t1 and
transition t2 are in structural conflict, t1 fires with 99%
chance and t2 fires with 1% chance, we assign p1 = 0.99 and
p2 = 0.01. A transition firing itself is an atomic event and
takes zero time. Our purpose of attaching firing intervals
(with possibilities) to transitions is to give a firing
possibility and priority among transitions in conflict. This is
very useful for modeling real-time systems.
 In EFTN, assume that transition t is enabled by n

 3

tokens, the fuzzy enabling time et(τ) of transition t is
computed by et(τ) = latest{πi(τ), i = 1, 2, ..., n}, where
latest is the operator that constructs the “latest-
arrival/lowest-possibility distribution” from n distributions
[15], and πi(τ) is the fuzzy time distribution that the enabling
token i arrives in the input place Pi of transition t. When
there are m transitions in conflict enabled with their fuzzy
enabling times, ei(τ), i = 1, 2, ..., t, ..., m, and CT(ti) = pi[αi,
βi], we compute the fuzzy occurrence time ot(τ) of transition
t whose fuzzy enabling time et(τ), as follows: ot(τ) =
min{et(τ) ⊕ pt(αt, αt, βt, βt), earliest{ei(τ) ⊕ pi (αi, αi, βi, βi),
i = 1, 2, ..., t, ..., m}}, where earliest is the operator that
constructs the “earliest-arrival/highest-possibility
distribution” from m distributions, min is the intersection of
distributions, and ⊕ is the extended addition defined as in
the computation of the fuzzy time distribution that a token
arrives at transition t’s output place p: πtp(τ) = ot(τ)
⊕ dtp(τ) = h1(o1,o2,o3,o4) ⊕ h2 (d1,d2,d3,d4) = min (h1, h2) (o1

+ d1, o2 + d2, o3 + d3, o4 + d4) ([15]) (dtp(τ) is the fuzzy
delay associated with the arc (t,p)).

4. EFTN models for CAVE
The CAVE has the following three main subsystems [10]:
• Tracker subsystem: which obtains 6-dimensional data

about the position of the viewer’s head and hand.
• Main subsystem: which creates images to be displayed on

the walls of the CAVE. There are four graphic pipelines
working concurrently. Each is used to render the image
on one wall. The CAVE implementation uses double
buffering between the main subsystem and the display
subsystem. While the main subsystem is writing into one
buffer, the display subsystem reads from the other buffer.
The buffer swapping is synchronized by a monitor signal
at 46 HZ frequency. Once images for all 4 walls have
been rendered, a buffer swapping takes place at the
leading edge of the next coming monitor signal if the
display subsystem is also ready to swap buffers.

• Image display subsystem: which draws the images on the
four walls. When the drawings of 4 images are all
finished, the display subsystem is ready to swap buffers.

Fig. 2 shows our EFTN model for the CAVE. In order to
analyze EFTN models, we illustrate two reduction rules
([19], [20]) for EFTNs. Our reduction rules can reduce the
size of EFTN models, while preserving safeness, deadlock
and timing properties of EFTN models. Applying the two
reduction rules shown in Fig. 3 to our EFTN model for the
CAVE in Fig. 2, results in a reduced EFTN model, as is
shown in Fig. 4. Fuzzy delays in the EFTN models in Figs.
2 and 4 are specified as follows. In Fig. 2, the delay for Head
and Wand data arriving at the Tracker, Dheadwand_to_tracker(τ) =
(50,50,50,50) ms. The delay for converting and transferring tracker
data to the Unix workstation, Dconvert(τ) = (10,10,10,10) ms.
Drender_front(τ), Drender_left(τ), Drender_right(τ), and Drender_floor(τ) are the
fuzzy delays of rendering images for front wall, left wall, right

wall, and the floor. We assume Drender_front(τ) =
(25.0,37.4,50.0,62.4) ms, and Drender_left(τ) = Drender_right(τ) =
Drender_floor(τ) = (10,20,30,35) ms, since the image on the front wall
is usually more complicated than the ones on other walls. The
delay for drawing images on each wall is Ddraw_front(τ) = Ddraw_left(τ)
= Ddraw_right(τ) = Ddraw_floor(τ) = (2,2,2,2) ms, and ε3 = ε4 = 0.2 ms
(a short time period that a monitor signal lasts). In Fig. 4, we have
latest {Drender_front(τ), Drender_left(τ), Drender_right(τ), Drender_floor(τ)} =
latest {(25.0,37.4,50.0,62.4), (10,20,30,35), (10,20,30,35),
(10,20,30,35)} = (25.0,37.4,50.0,62.4) ms, and latest(Ddraw_front(τ),
Ddraw_left(τ), Ddraw_right(τ), Ddraw_floor(τ)) = (2,2,2,2) ms.

complete_render_frontwall

Swap_Buffer SwapMonitor

Generate_Monitor_signal

Swap_signal

[0,0]

(20.8,20.8,20.8,20.8)[ε4,ε4]

Swap_Signal_passed

complete_render_leftwall complete_render_rightwall complete_render_floor

swapped1

Draw_front

Ddraw front(τ)

complete_draw_front

swapped2

Draw_left

Ddraw left(τ)

complete_draw_left

swapped3

Draw_right

Ddraw right(τ)

complete_draw_right

swapped4

Draw_floor

Ddraw floor(τ)

complete_draw_floor

ready_to swap

begin_render

render_front

Drender_front(τ)

render_left

Dconvert(τ)

render_right

Drender right(τ)
render_floor

Drender floor(τ)

begin_render_frontwall
begin_render_leftwall

begin_render_rightwall

begin_render_floor

Tracker_Got_Data

convert_and_transfer
Data_ready

DataReady_render

TrackerdataCome

use_data

drawing_completed

Drender left(τ)

Wand Head Button_Input

Head_Wand_Input Button_Press

NewData

Tracker_Obtain_Data
Tacker_Monitor

Generate_Monitor_signal

Monitor_signal

(10.4,10.4,10.4,10.4)

[ε3,ε3]
Signal_passed

(ε1, ε1, ε1, ε1)

(ε1, ε1, ε1, ε1)

Dheadwand_to_tracker(τ)

(ε1, ε1, ε1, ε1)
(ε1, ε1, ε1, ε1)

Ready_render

[0,0]

DataComeTracker

(ε1, ε1, ε1, ε1)

Fig. 2 An EFTN model for the CAVE

5. EFTN models for NICE

The main distributed components of NICE consist
of a garden simulation server, an avatar repeater for avatar
state information, and NICE clients ([13], [14]). A NICE
client uses an unreliable (but faster) protocol UDP (User
Datagram Protocol) to send avatar information (local
tracker data) to the avatar repeater and a reliable (but
slower) socket connection (TCP protocol) to send the local
avatar’s world-changing messages to the server. The avatar
repeater broadcasts avatar state information by using

 4

UDP. The NICE server supports the garden simulation,
updates the world (garden) once receiving an avatar’s
world-changing message, and broadcasts the new world
state information to all clients by using TCP.

The Information Request Broker (IRB) is the core
of all client and server applications in the NICE. An IRB is
an autonomous repository of persistent data that is
accessible by a variety of networking interfaces. A key is a
handle to a storage location in an IRB's database. Keys are
uniquely identified across all IRBs. A local key can initiate
and accept multiple linkages to and from other remote
IRBs. Any modifications that are made to one key will
automatically be propagated to all the other linked keys
([13], [14]).

pa pa

ta
da(τ)

tb1tbn

db1(τ)dbn(τ)

pb1pbn

tfn tf1

pbn pb1

db1(τ) ⊕ da(τ)dbn(τ) ⊕ da(τ)

N NR

t

tb

latest{da1(τ), dan(τ)}

N

da1(τ)dan(τ)
t

NR

tb

(a) Post-fusion (post-fuse transition ta with tb1, …, tbn)

(b) Parallel fusion of places
Fig. 3 Illustration of two reduction rules: Post-fusion of transitions,

and Parallel fusion of places.

complete_render_4walls

Swap_and_draw SwapMonitor

Generate_Monitor_signal

Swap_signal[0,0]

(20.8,20.8,20.8,20.8)[ε4,ε4]

Swap_Signal_passed

latest(Ddraw_front(τ),Ddraw_left(τ),Ddraw_right(τ),Ddraw_floor(τ))

complete_draw_4walls

ready_to swap

latest(Drender_front(τ),Drender_left(τ),Drender_right(τ),Drender_floor(τ))

Ready_render use_data_render

drawing_completed

Data

HeadWandButton

Head_Wand_Input

NewData Tacker_Monitor

Generate_Monitor_signal

Monitor_signal

(10.4,10.4,10.4,10.4)

[ε3,ε3]

Signal_passed

DataCom

(ε1, ε1, ε1, ε1)

Dheadwand to tracker(τ)

Tracker

Dconvert(τ)
Tracker_Got_Data

convert_and_transfer Data_ready

TrackerdataCome

Tracker_Obtain_Data
[0,0]

 Fig. 4 Reduced EFTN model of the CAVE

 The garden server is an IRB with two main keys:
an incoming message key and an outgoing message key. If
the local avatar has any action changing the garden (e.g.,
“plant a tree”), the local VE will send a message from the
local OUT Key to the server’s IN key by using TCP. Then
the garden server updates the world state and sends the new
world state information to each client’s IN key via the
server’s OUT keys by using TCP. The garden world
evolves itself as the plant grows, the weather changes, and
animals appear. So the server sends each client the new
world state information by using TCP once it updates.
 The avatar repeater has a key for each client to
hold its avatar-state information. When client1 updates the
local screen (swapping-buffer happens), avatar1’s state
information will be sent from client1 to the avatar1-state
key on the repeater by using UDP. Another client (e.g.
avatar2) will get the state of avatar1 by subscribing to the
avatar1-state key on the repeater.
 In Fig. 5, we give the EFTN model for the garden
server, avatar repeater and communication interface of two
existing NICE clients communicating with each other, the
repeater and the garden server. Each client sends local
avatar’s tracker information to the repeater by using UDP
and the repeater broadcasts it to all other clients also by
using UDP. Using UDP, the sender just sends out the
Protocol Data Unit (PDU) and never retransmits. So we use
a transition UDP with fuzzy delay DUDP(τ) =
(50,100,150,200) ms (which is based on statistics data
collected from network monitoring [22]) to represent UDP
channel in Fig. 5, and we assume the data loss rate of UDP
is 1%.

 5

NICE Client 1 NICE Garden server

OUT IN

OUT1

world_state

IN

send_avatar1_state

got_avatar1_state

broadcast

receive_avatar1_state

send_to_avatar2
NICE Client 2

send_avatar2-state

receive_avatar2_state

TCP

TCP

UDP

UDP

UDP

OUT TCP

TCP

UDP

got_avatar2_state

send_to_avatar1

OUT2

IN

Changed

DUDP(τ) DUDP(τ)

DUDP(τ) DUDP(τ)

world_
evolve

broadcast

Ev-Timer

Time_to_evolve

world_change

broadcast

DEV(τ)Lost

0.01[0,0]
0.99[0,0]

Lost
0.01[0,0]

0.99[0,0]

Lost
0.01[0,0]

0.99[0,0]

Lost
0.01[0,0]

0.99[0,0]

NICE avatar Repeater

Fig. 5 An EFTN model for 2 existing NICE clients
communicating with each other, the repeater and the server, where
the delay of UDP channel is DUDP(τ) = (50,100,150,200) ms, the
world evolves in the interval DEV(τ) = (10,60,180,300) sec.

SendIt

Tacker_Monitor

WorldData RemoteData

OUT

IN

receive_avatar2_state

send_avatar1_state

receive_World_state

Change

ChangeWorldOrNot

0.002[0,0]

Got_new_avatar2_data

Tracker_Data_No

complete_render_4walls

Swap_and_draw
SwapMonitor

Generate_Monitor_signal

Swap_signal[0,0]

(20.8,20.8,20.8,20.8)[ε4,ε4]

Swap_Signal_passed

latest(Ddraw_front(τ),Ddraw_left(τ),Ddraw_right(τ),Ddraw_floor(τ))

complete_draw_4walls

ready_to swap

latest(Drender_front(τ),Drender_left(τ),Drender_right(τ),Drender_floor(τ))

Ready_render use_data_render

drawing_completed

HeadWandButton

Head_Wand_Input

NewData Tacker_Monitor

Generate_Monitor_signal

Monitor_signal

(10.4,10.4,10.4,10.4)

[ε3,ε3]

Signal_passed

DataCom

(ε1, ε1, ε1, ε1)

Dheadwand to tracker(τ)

Tracker

Dconvert(τ)
Tracker_Got_Data

convert_and_transfer Data_ready

TrackerdataCome

Tracker_Obtain_Data
[0,0]

Not_Change

0.998[0,0]

DuringWorldChangeAction

ActionFinished

NotInWorldChangeAction InWorldChangeAction ActionTimeOut

(800,1000,1200,1500)

Fig. 6 The EFTN model for a CAVE in NICE as a distributed component

 Each TCP transition in Fig. 5 is an abstract of a
subnet for TCP protocol. TCP is a reliable and ordered
transport layer protocol. One PDU’s loss will delay all
subsequent PDUs. No subsequent PDU can be delivered to
the application layer until that PDU is successfully received.
We have built our EFTN model for TCP and tested the
behavior of TCP model by simulation. Our simulation
results are consistent with network monitoring results [22].
Because the space is limited, we do not include our EFTN
model for TCP in this paper. We only show our simulation
results and discuss the behavior of TCP protocol and its
effects on NICE in Section 6.2 and 6.3.

 In NICE, a local VE (e.g., CAVE) will need local
avatar-state information, remote avatars state information,
and world-state information to render images. The EFTN
model for a CAVE in NICE as a distributed component is
shown in Fig. 6. When an avatar wants to change the world,
it usually takes about 1 second (possibility distribution
(800,1000,1200,1500) ms) to complete the action. During
an avatar’s world-changing action, all of the tracker data
used for updating the local screen will be sent to the server
by using TCP. An avatar may change the world 2~3 times
per minute and the local screen may be updated 16~24
times per second (16 times/sec if the image rendering delay
≤ 41.6 ms each time, 24 times/sec if the image

 6

rendering delay is in the interval (41.6, 62.4) ms each time).
So, we assume 0.2% of the tracker data used for updating
local screen may indicate that local avatar wants to change
the garden. (In Fig. 6, when the avatar is not already in an
world-changing action, place ChangeWorldOrNot has two
output transitions, the possibility of firing transition Change
is 0.002, and the possibility of firing Not_Change is 0.998.)
After we put the communication interface and internal
structure of distributed CAVEs together, we have studied
the network effects on NICE and the dynamic performance
of NICE by using a simulation tool within Design/CPN
[21]. These simulation results are given next in Section 6.

6 Simulation Results
We have simulated fuzzy delays of our EFTN models by
defining a function to generate single values in trapezoidal
possibility distributions within the Design/CPN tool [21].
Given a fuzzy delay D(τ) = (a,b,c,d), we define a function
FUZZY(a,b,c,d) to generate a single delay value in
trapezoidal possibility distribution (a,b,c,d) as the
representation of the fuzzy delay, whenever the fuzzy delay
D(τ) is encountered in simulation. In function
FUZZY(a,b,c,d),
1) A random value atime in the interval [a,d] is generated.
2) If atime is in the interval [b,c], atime will be picked up as the
delay value since the possibility is 1 in the interval [b,c].
3) If atime is in the interval [a,b) or (c,d], we generate a random
value V in (0,1) and compute the possibility D(atime) in the
trapezoidal distribution (a,b,c,d). atime will be picked up as the
delay value only if D(atime) ≥ V.
4) Repeat the above procedure until a delay value can be picked
up.
The following are the results of the simulations. Section 6.1
is about strategies for utilizing remote avatar’s state
information received from UDP channel and the simulation
results for remote avatar’s corresponding display behavior
on local screen. Section 6.2 discusses simulation results of
our EFTN model for TCP protocol. And Section 6.3 shows
the TCP protocol’s effects on message response time
between the NICE garden server and clients.
6.1 Remote Avatar’s Display Behavior on Local Screen

Unreliable protocols (e.g. UDPs) are used for the (faster)
transmission of avatar state information (remote tracker
data). That is because: 1) The loss of one tracker data is
usually followed shortly afterwards by newer ones; and 2)
Unreliable protocols have a lower latency and utilize lower
bandwidth than reliable protocols. However, UDP protocol

is unordered. Using unordered remote tracker data will
make the remote avatar jump back and forth on the local
screen. Fig. 7 shows the time of avatar2’s original
movement and the time that movement is displayed on the
NICE client1’s screen in the original design. We see the
remote avatar’s display may jump back and forth. To avoid
the jumping back behavior, the NICE currently uses a filter
to accept remote avatar data in increasing order. Fig. 8
shows the display behavior using the filter. Now the
jumping back phenomenon is eliminated. However, one
early arriving remote avatar tracker data will make the filter
discard all remote tracker data that are sent before, but
received later than that early arriving data. From Fig. 8, we
see that the display of the remote avatar is not smooth yet.
 To display the remote avatar’s movement more
smoothly, we suggest using a buffer to store the incoming
remote avatar state information sent after the last one used
for local display, and using the remote avatar’s state
information in smooth gap. Fig. 9 shows the improved
strategy using a buffer for remote avatar tracker data. When
a new remote tracker data comes and its sequence number is
greater than the last one’s used for rendering images, it is
inserted into the buffer and the list of sequence numbers of
the remote tracker data is kept in ascending order in the
buffer. When it is time to render new images, pick up the
remote tracker data in the middle of the list from the buffer.
Fig. 10 shows that the display of the remote avatar is much
smoother using the improved strategy than using the filter.

200

700

1200

1700

2200

2700

3200

3700

4200

4700

5200

5700

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500
Time [ms] that avatar2's original movement

Ti
m

e
[m

s]
 th

at
 a

va
ta

r2
's

 m
ov

em
en

t d
is

pl
ay

ed
 o

n
N

IC
E

cl
ie

nt
1'

s
sc

re
en

Fig. 7 The simulated display behavior of a remote avatar on

the local screen without using the filter

 7

200

700

1200

1700

2200

2700

3200

3700

4200

4700

5200

5700

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500
Time [ms] that avatar2's original movement

Ti
m

e
[m

s]
 th

at
 a

va
ta

r2
's

 m
ov

em
en

t d
is

pl
ay

ed
 o

n
N

IC
E

cl
ie

nt
1'

s
sc

re
en

Fig. 8 The simulated display behavior of a remote avatar on the
local screen with using the filter

Fig. 9 Improved strategy: use a buffer for remote avatar state
information

200

700

1200

1700

2200

2700

3200

3700

4200

4700

5200

5700

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500
Time [ms] that avatar2's original movement

Ti
m

e
[m

s]
 th

at
 a

va
ta

r2
's

 m
ov

em
en

t d
is

pl
ay

ed
 o

n
N

IC
E

cl
ie

nt
1'

s
sc

re
en

Fig. 10 The simulated display behavior of a remote avatar on the

local screen with using buffer

6.2 Test of TCP protocol

We tested our model for TCP protocol by giving one data
unit to TCP sender for transmission every 50 ms and 100
ms respectively, and recording the delay from the time the
data unit is passed to the TCP sender to the time the TCP

receiver delivers it to the application. Our simulation result
is consistent with the experimental results in [22], which is
obtained by monitoring the network delay on the Internet.
♦ Case 1: give the TCP sender a data unit every 50 ms:

0

20

40

60

80

100

120

140

160

50 110 170 230 290 350 410 470 530 590 650 710 770 830 890

Delay times [ms]

Fr
eq

ue
nc

y

Fig.11 (a) Delay distribution for data units coming every 50 ms

0

100

200

300

400

500

600

700

800

900

1000

1 38 75 112 149 186 223 260 297 334 371 408 445 482 519 556 593 630 667 704 741 778

Data unit sequence number

D
el

ay
 ti

m
e

[m
s]

Fig.11(b) History chart for each data unit coming every 50 ms

 As shown in Fig.11, it is obvious that the TCP has
a slow start and one data unit’s long delay will delay all
subsequent data units after it starts. TCP’s reliable and
ordered behavior greatly increases the average network
latency and jitter.

♦ Case 2: give the TCP sender a data unit every 100 ms:

0
10
20
30
40
50
60
70
80
90
100
110
120
130
140
150

50 90 130 170 210 250 290 330 370 410 450 490 530 570 610 650 690 730 770
Delay times (in ms)

Fr
eq

ue
nc

y

Fig.12(a) Delay distribution for data units coming every 100 ms

 Fig. 12(a) shows that decreasing the traffic to one
data unit every 100 ms makes the delay distribution very
similar to UDP’s delay distribution (50,100,150,200)

Ready
Render

E

Render

Receive
Avatar2

State

TD

Receive
Avatar2

Remote
AvatarTDL

[]

Last
used

TD

FindNext
To use

C

input (tdl, tk, origtk);
output (td, resttdl);
action
let
val nexttd = findclose((tk,origtk),tdl)
in
((nexttd, removelesstn(nexttd, tdl)))
end;

Remote
AvatarData

TD (0,0.0)

Begin
Render

E

e

e

e

(tn,origt)

(tk,origtk)

if tn > tk
then inserttd((tn,origt), tdl)
else tdl

(tk,origtk)

(tk,origtk)

tdl

tdl

(tk,origtk)

tde

resttdl

 8

ms. However, Fig. 12(b) shows that one data unit’s long
delay (because of loss and retransmit), still greatly delays
the subsequent data units. Also the slow start still exists.

50
100
150
200
250
300
350
400
450
500
550
600
650
700
750

1 50 99 148 197 246 295 344 393 442 491 540 589 638 687 736 785
Data unit sequence number

De
la

y
tim

e
[m

s]

 Fig.12(b) History chart for each data unit coming every 100 ms

6.3 Response Time via TCP channel

Once an avatar has a world-changing action, a world-
changing message is sent from the NICE client to the
garden server via TCP channel. Once the garden server
updates the world state according to the client’s
world_changing message, the changed world state is sent
from garden server to all clients via TCP channels. We refer
the response time as the time duration from the time that a
world-changing message is sent by a NICE client to the
time that the updated world state is received by that client.

Here we show the simulation results of the
response time via TCP channels for a NICE project with 5
clients. Fig. 13 shows the history chart recorded at client1’s
site for the NICE with 5 clients. We can see the effects of
TCP’s slow start. And it is obvious that the response times
for all avatars’ world-changing activities have the same
trend at client1’s site, if it happens that all avatars want to
change the world at the same moment (e.g., around 78000
ms in Fig. 13.) The loss of one data on the TCP channel
from the server’s OUT key to a client’s IN key will not only
cause a long delay for client1 receiving response for one
avatar’s world-changing activity, but also postpone client1
receiving response for all avatar’s world-changing
activities. The TCP channel from the server’s OUT key to a
client’s IN key may get congested when the number of
clients is increased and all avatars happen to try changing
the world at the same time. This situation becomes a
bottleneck.

7. Conclusion and Future Work
As mentioned in the introduction, networked virtual
environments (net-VEs) are not novel, but at present, there
is no formal method available for designing, implementing
and testing net-VEs. This paper proposes to apply Petri net
formal modeling and simulation of NICE - a net-VE
developed at EVL of UIC. We have shown that EFTNs are
powerful enough to model complex systems such as CAVE
and NICE, and simulate the uncertain temporal behaviors of

a net-VE system. Using our EFTN models, we have
simulated the remote avatar’s display behavior on local
screen and proposed an improved strategy to make the
display smoother. The characteristics and bottleneck of the
response time via the TCP channel was easily captured in
the simulation results Our simulation shows that the TCP is
reliable but greatly increases the average network latency
and jitters. Thus, it is desirable to design a new transport
layer protocol which can transmit shared state information
with less latency and jitter than the TCP. We plan to
propose new protocols, and model, simulate and analyze
them in our future papers.

200

400

600

800

1000

1200

1400

1600

0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000 110000 120000

Time [ms] that a client sends a world-changing message to the server

D
el

ay
 [m

s]
 fr

om
 th

e
m

es
sa

ge
 s

en
t o

ut
 to

 c
lie

nt
1

re
ce

iv
ed

 th
e

re
sp

on
se

 fr
om

 th
e

se
rv

er

Avatar1 Avatar2 Avatar3 Avatar4 Avatar5

 Fig. 13 History chart of the response time for the NICE

 with 5 clients

ACKNOWLEDGEMENTS

We sincerely thank Robert Kenyon for explaining net-VEs,
Jason Leigh and David Pape for clarifying net-VE
implementation details, Andrew Johnson and Dan Sandin
for discussing problems that exist in net-VEs, and all
members of the EVL at UIC for providing valuable
comments on our work.

References
[1] S. Singhal, M. Zyda, Networked Virtual Environments: Design
and Implementation, Addison-Wesley, New York, July 1999
 [2] E. J. Berglund, and D.R. Cheriton, "Amaze: A multiplayer
computer game," IEEE Software vol.2, no.1, pp.30-39, May 1985.
[3] D. Miller, J.A. Thorpe, "SIMNET: The advent of simulator
networking," Proceedings of the IEEE vol.83, no.8, pp.1114-1123,
August 1995.
[4] A. Johnson, T. Moher, J. Leigh, Y. Lin, "QuickWorlds:
Teacher driven VR worlds in an Elementary School Curriculum,"
Proceedings of SIGGRAPH 2000 - Educators Program, New
Orleans LA, July 23-28, 2000.
[5] C. Carlsson, and O. Hagsand, "DIVE- A multi-user virtual
reality system," Proceedings of the IEEE Virtual Reality Annual
International Symposium, pp. 394-400, Seattle, September 1993.
[6] G. Singh, L. Serra, W. Prg, et al, "BrickNet: A software toolkit
for network-based virtual environment," Presence: Teleoperators
and Virtual Environments, vol.3, no.1, pp.19-34, Winter 1993.
[7] C. Shaw, J. Liang, M. Green, and Y. Sun, “The Decoupled

 9

Simulation Model for Virtual Reality Systems,” Human Factors in
Computing Systems CHI’92 Conference proceedings, pp. 321-
328, Monterey, California, May 1992.
[8] P. Strauss, and R. Carey, “An Object-Oriented 3D Graphic
Toolkit,” Proceedings of the ACM Computer Graphics Conference
(SIGGRAPH’92), pp. 341-349, 1992.
[9] G. J. Kim, K. C. Kang, H. Kim and J. Lee, “Software
engineering of virtual worlds,” Proceedings of the ACM
Symposium on Virtual reality software and technology 1998 , pp.
131 – 138, 1998.
[10] D. Pape, "CAVE user’s guide," Electronic Visualization
Laboratory, University of Illinois at Chicago, Dec. 1996.
[11] C. Cruz-Neira, D. J. Sandin, and T. A. DeFanti, "Virtual
Reality: The Design and Implementation of the CAVE,"
Proceedings of SIGGRAPH '93 Computer Graphics Conference,
ACM SIGGRAPH, pp. 135-142, August 1993.
[12] T.A.DeFanti, D.J.Sandin, and C. Cruz-Neira, "A `Room' with
a `View'," IEEE Spectrum, pp.30-33, October 1993.
[13] M. Roussos, A. Johnson, T. Moher, J. Leigh, C. Vasilakis, C.
Barnes, "Learning and Building Together in an Immersive Virtual
World," Presence, vol. 8, no. 3, June, 1999, pp.247-263.
[14] A. Johnson, M. Roussos, J. Leigh, C. Barnes, C. Vasilakis, T.
Moher, "The NICE Project: Learning Together in a Virtual
World," Proceedings of VRAIS '98, Atlanta, Georgia, pp 176-183,
Mar 14-18,1998.
[15] T. Murata, "Temporal Uncertainty and Fuzzy-Timing High-
Level Petri Nets," Application and Theory of Petri Nets, Lecture

Notes in Computer Science, Vol. 1091, pp. 11-28, Springer-
Verlag, New York, June 1996.
[16] Y. Zhou and T. Murata, "Petri Net Model with Fuzzy-Timing
and Fuzzy-Metric," Special Issue on Fuzzy Petri Nets,
International Journal of Intelligent Systems, Vol.14, No.8, August
1999, pp. 719-746.
[17] P. Merlin, A study of the Recoverability of Computer
Systems, Ph.D. thesis, Computer Science Dept., University of
California, Irvine, 1974.
[18] R. Mascarenhas, D. Karumuri, U. Buy, and R. Kenyon,
Modeling and analysis of a virtual reality system with time Petri
nets, Procs. 19th Int. Conf. on Software Engineering, pp. 33-42,
April 1998, Kyoto, Japan.
[19] E. Juan, J. P. Tsai, T. Murata, and Y. Zhou, "Reduction
Methods for Real-Time Systems Using Delay Time Petri Nets," to
appear in the IEEE transactions on Software Engineering.
[20] Y. Zhou, T. Murata, and J. Tsai, "Reduction Methods for
Real-Time Systems Using Fuzzy Timing Petri Nets," Technical
report, EECS Dept., University of Ilinois, Chicago, 2000.
[21] K.Jensen, and Design/CPN group, Design/CPN Online,
Department of Computer Science, University of Aarhus, Denmark.
Online: http://www.daimi.au.dk/designCPN/.
[22] K. Park, and R. Kenyon, "Effects of Network Characteristics
on Human Performance in a Collaborative Virtual Environment,"
Proceedings of IEEE VR `99 , Houston TX, March 13-17, 1999.

